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ABSTRACT OF THE DISSERTATION

Spatial and Temporal Dynamics of Relativistic Plasma

Beat Waves

by

Amit Kumar Lal

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 1996

Professor Chan Joshi, Chair

Recent experiments at UCLA have demonstrated that relativistic plasma

waves, excited by two collinear electromagnetic waves beating at the plasma

frequency, can be used to accelerate electrons to high energies. The accelerating

electric field of this plasma beat wave is proportional to the plasma wave density

modulation, nJ!no, and the total energy gain is proportional to this wave ampli­

tude and the spatial length of the wave. In this dissertation, experimental results

are presented of the accelerated electron energy spectrum, and of the proper­

ties of the plasma beat wave. In particular, the wave amplitude as a function of

time, space, frequency, and wavenumber have been determined through Thomson

scattering and forward scattering, In addition, Raman/Compton back scattering

is developed as a diagnostic for both the plasma and the beat wave. Also, the

heating of the plasma by the beat wave has been measured by monitoring the

x-ray emission spectrum with a CCD camera used as a single photon counter.
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Chapter 1

Introduction

Since the first electron accelerator was built in the 1930s, the maximum electron

energies have increased from 1 MeV up to 50 GeV. The maximum acceleration

gradient in conventional accelerators, however, is limited to 10-100 MeV[ia, due

to RF breakdown in the walls of the structure. Therefore, achieving higher elec­

tron energies requires larger and more expensive accelerators.

One method to overcome this limit of the acceleration gradient is to use a

plasma as the accelerating structure. Since the plasma is already broken down, it

can sustain much higher electromagnetic fields than conventional RF accelerators.

In 1979, Tajima and Dawsonj l] proposed several schemes to accelerate particles

from the longitudinal electric fields of relativistic plasma waves driven by intense

laser beams. One particular scheme, the plasma beat wave accelerator (PBWA),

utilizes two co-propagating laser beams such that the frequency difference of the

lasers matches the natural frequency wp of the plasma. Several groups around

the world have reported the generation of plasma beat waves [2, 3, 4, 5], as well

as successful electron acceleration [6, 7, 8J.
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This thesis describes the latest developments in the PBWA experiments car­

ried out at UCLA under the supervision of Professor Chan Joshi. In particular,

several experiments are discussed that characterize the details of the electron ac­

celeration and plasma wave dynamics. Chapter 1 begins with an introduction to

relativistic plasma beat waves and the experimental setup. Chapter 2 describes

the successful acceleration of injected electrons up to 30 MeV, and the measure­

ment of the accelerated electron energy spectrum. A single shot, eight channel

spectrometer, has been developed and implemented.

In Chapter 3, Thomson scattering is used as a diagnostic for the relativistic

plasma beat waves responsible for electron acceleration. Thomson scattering is

used to determine the plasma beat wave amplitude as a function of time, fre­

quency, space, and wavenumber. When the plasma wave amplitude and phase

are known as a function of time and space, the expected energy gain of an injected

electron can be estimated. In Chapter 4, time and frequency resolved forward

scattering is used as a second independent diagnostic of the plasma wave ampli­

tude and length. The intensity of the forward scattered light shifted in frequency

by wp is proportional to (J nI/n odl )2, where nI/n o is the plasma wave amplitude

per unit length dl. Chapter 5 discusses the data from experiments on the back

scattered light from the plasma. The back scatter gives direct information about

non-relativistic plasma waves, such as those produced from Stimulated Raman

and Brillouin Scattering, and indirect information about the plasma beat wave

since coupling between the 'fast' (relativistic) and 'slow' (non-relativistic) waves

will appear in the back scatter. It has been shown previously[9] that the presence

of a large amplitude plasma wave results in the heating of the plasma electrons.
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In Chapter 6, this heating is measured by monitoring the x-ray radiation spec­

trum from the plasma. Chapter 7 summarizes the results of the current UCLA

experiments, and discusses the implications on future PBWA work.

This thesis describes the continuation of the work carried out by the present

author that builds on the previous work of other students. The reader should

refer in particular to Ph.D. theses by W.P. Leemans[10] "Topics in High Intensity

Laser-Plasma Interactions" (UCLA, 1991) and M.J. Everett [9] "The Physics of

Beat-Excited Plasmas" (UCLA, 1994) for completeness.

1.1 Plasma Beat Waves

In the plasma beat wave accelerator (PBWA), two electromagnetic waves (wo,ko)

and (WI, kd excite an electrostatic plasma wave (W2, kz) that obeys the relations [11]

(1.1)

where the plasma density no has been chosen so that Wz equals the plasma fre­

quency wp = 41fnoe
2/m. Here e is the electron charge, and m is the electron

mass. The phase velocity of the plasma wave is equal to the group velocity of the

light waves in the limit WO,l »w p . This ensures that the particles trapped in the

plasma wave will travel in near synchronism with the light pulses. For the UCLA

PBWA experiments, the laser frequencies are W o 21fC/l0.6/lm = 1.78 x 10 14 S-1

and WI = 21fc/lO.3/lm = 1.83 x 1014 S-1 while wp ~101Z s-\ so this requirement

is satisfied.

In Lagrangian coordinates, the evolution of the plasma wave can be modeled
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by the 1-D differential equation[12]

(1.2)

Here I; is the electron displacement, 0<1,2 = eE 1,2/ mW1,2c are the normalized laser

intensities, ,6,w is the laser difference frequency, ,6,k is the laser wavenumber

difference, and the damping of the wave (which is on the timescale of its satura­

tion) has been neglected. A solution of this equation is shown in Figure 1.1, for

0<1 = 0.17, 0<2 = 0.07 (150 ps risetime, 300 ps FWHM), and assuming the initial

density is 10% above the theoretical resonant density (where wp equals W o - Wl),

with the density decreasing at the experimentally measured rate of 20% per 100

ps. (Section 3.2). The initial density must be set ~10% above the resonant den-

12040 80

Time (ps)

o.0 0 L-L~:c:::::::i_--l----l_-.J

o

0.50

0.25

o
c-­~c
CD

"0
:::l
:=:
0..
E«
CD

~
S

Figure 1.1: Solution to Equation 1.2 for the following parameters: 0<1 = 0.17,
0<2 = 0.07, ninit=1.1 n res

sity to compensate for hydrodynamic expansion of the plasma and any plasma

blowout induced by the laser[13] or the plasma wave[14].

4



This predicts a wave reaching a peak amplitude of approximately 35%, and

reaching this peak before that of the laser pulses. This equation, which applies to

one point in space, can be applied to all points along the laser axis, treating each

point independently, but with a slightly different laser and density evolution due

to the laser propagation[7] (See Figure 1.2). For example, one Rayleigh length 2 0

o 100 200
Time (ps)

0 1.2,.........,...-r-r--,.........,... ........

c:;c0.8o r m+-.m;.; ..m..;m.m...+==~
-. 0.4 r-+---;-;---i;T"'­

QI
c: 0.0 r-+--;e.-.

-o.4......................~J.....w....... .......,o 100 200
Time (ps)

- -Laser I
um Densit?
-n/n"

z=o.o/

o 100 200
Time(ps)

Focusing ~

Figure 1.2: I-D Model to Predict Wave Amplitude vs. Space.

before the best focus of the laser, the peak laser intensity is reduced by a factor

of two, and the laser arrives about 30 ps earlier than it does at best focus. The

plasma formation and the beat wave evolution are determined from this laser

profile. A similar situation can be seen one Rayleigh length after best focus,

except that the events are occuring about 60 ps later. It is important to note

that although the wave amplitude in Figure 1.2 remains high for the duration of

the laser pulse (since there is no damping included), the phase coherence of the
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i , - t=60ps

! I I - - t e toocs
I

1 1

I \ I

!...'
/I r-, \

i <,

wave is lost after the first saturation. Also, ion effects, which were not included

here, become important after a few ion plasma periods (lJpi "" 50 ps). Therefore,

only the data in approximately the first 100 ps is an accurate representation of

the beat wave evolution.

From this model, one can construct the wave amplitude as a function of space

and time, as shown in Figure 1.3. Early in time (t = 60 ps), the wave has not

o

"<,

"I:: 0.3
w
'g
.w 0.2."
~

j 01
w
>
~ 0.0

-3 -2 -1 0 2 3
Space (em)

Figure 1.3: Wave Amplitude vs. Space at t=60 and t=lOO, based on the I-D
Model.

reached the best focus yet, and has a smaller amplitude due to the reduced laser

intensity. At t = 100 ps, the maximum wave amplitude has been reached, and

extends for ~l cm in space (FWHM).

1.2 Experimental Setup

The experiment consists of five main components (See Figure 1.4) : a) CO2 Laser,

b) Plasma, c) Electron Beam, d) Electron diagnostics, and e) Optical diagnostics.
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Overviewof beatwaveexperiment
• Experiment consists of five major components ...

1. Two-frequency
laser beam

\
3. Electron

linac

~ ...JIZI

/
Electron

lens

2. Plasma

5. Optical
diagnostics

4. Electron
diagnostics

Figure 1.4: Overview of Experimental Setup

1.2.1 Laser

The CO 2 laser system (discussed in more detail in Appendix I) is designed to

produce a two frequency laser beam (10.6, 10.3 /.lm) with an energy of ~ 100J

and a pulse width of ~ 300 ps (FWHM). The laser system begins with a hybrid

CO 2 oscillator (See Figure 1.5). The high pressure oscillator (Lumonics 280, 1.5

ATM) produces a multimode pulse with an energy of approximately 200 mJ and

a pulsewidth of 150 ns (FWHM). The oscillator cavity is seeded by a low pressure

laser (22 Torr) to produce a single longitudinal mode. Also within the main cavity

is a small gas cell which can be filled by various absorber gases (SF6, Freon 115,

etc) to adjust the gain of the various laser lines (10.6 psu; 10.3 ux«, and 9.6 /.lm).

By adjusting the gas cell mixture and by tuning the cavity length with a small

piezoelectric crystal, it is possible to produce approximately equal output on a

pair of CO 2 lines (10.6 and 10.3 us«, for example).
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MARS Laser System

(4) Sparker

(5)
Hot C0 2Cell

(1) - Oscillator: 150 mJ, 200 ns, A= 10.6 11m,multi-mode pulse
(2) - Low Pressure Laser: selects a single longitudinal mode
(3) - Absorber Cell: used for two frequency laser operation
(4) - Sparker: creates fast cutoff ( < 50 ps) of pulse
(5) - Hot CO2 Cell : transmits only a short pulse (75 Ill, 100 ps)
(6) - Pre-Amplifier: amplifies to 1 mJ, some pulse broadening
(7) - MARS Amplifier: produces 150 ps rise, 300 ps FWHM pulse

1O.61lm: 60J (vase/c = 0.17), 10.3 11m: 20J (vase/c = 0.10)
Spot Radius: 150 11m, Rayleigh Range 2zo= 1.3 ern

Figure 1.5: Schematic of the MARS Laser System
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This long (150 ns), single longitudinal mode pulse is focused through a spark

gap, which is triggered at the peak of the laser pulse. When the spark gap

fires, the strong fields of the laser quickly produce a plasma, which reflects the

remainder of the laser pulse. The result is a pulse with a very rapid ("" 50 ps)

cutoff. The chopped pulse then triple passes a three meter cell containing 35

mT of CO2 gas at 400°C. Through the process known as free induction decay

(described in Appendix I), the 100 ns pulse is converted to a 100 ps pulse with

approximately the same peak power. The pulse then double passes a 1 ATM

TEA pre-amplifier (Lumonics 103), which increases the energy by a factor of 10­

20, and also gain broadens the pulsewidth to approximately 250 ps. The pulse

then triple passes the main MARS amplifier (2.3 ATM), which amplifies the pulse

up to 100 Joules with a FWHM of 350 ps. This pulse then enters the vacuum

chamber through a 8" NaCI window and is focused by a f/11.5 parabolic mirror

to a near diffraction limited 300 /-lm spot diameter at the center of the vacuum

chamber. This results in a peak laser intensity of 5xl0 14 W/cm 2
, or a normalized

quiver velocity ex= eE/mwc = 0.2.

1.2.2 Plasma

The plasma is produced by the laser itself by tunneling ionization[15] of a static

fill of hydrogen gas (140 mTorr). Tunneling ionization occurs when the strong

electric fields of the laser suppress the atom's Coulomb potential barrier, and

allow the electron to tunnel free (See Figure 1.6). The evolution of the plasma

density n(t) as a function of time can be determined from the following rate
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<p(X)= Coulomb potential...
laser field ...unperturbed

...Iaser perturbed

~_V""':-~Tunnelled
electron

1.0

Relative
density

0.0
o

F

20 40 60 80

Time (psec)

Plasma Parameters: Gas: Hydrogen
Density: 8.6 x 1015 cm'
Plasma Period: 1.2 ps
Plasma Wavelength: 360 11m
Lorentz Factor: 34

Figure 1.6: Plasma Production by Tunneling Ionization.

equations:

dn(t) = w(t)(no - n(t)) (1.3)
dt

w(t) = 4~t (;J(exp [~2 (;:) 3/2 (] , (1.4)

where no is the initial neutral gas density, ( = EalE(t), E; = 5.21 X 1011 V1mis

the atomic unit of electric field, E(t) is the applied electric field, E, is the ioniza­

tion potential of the atom, and Eh is the ionization potential of hydrogen. For

our laser parameters, assuming atomic rather molecular hydrogen, the plasma is

fully ionized within the first 20-30 ps of the laser pulse. From tunneling ionization

theory, the plasma has a transverse temperature of approximately 75 eV, and a

longitudinal temperature of a few eV [16, 17].
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